
PRIMARY AMINES VIA ELECTROPHILIC AMINATION OF ORGANOMETALLIC COMPOUNDS WITH O-(DIPHENYLPHOSPHINYL) HYDROXYLAMINE 1

Gernot Boche*, Michael Bernheim and Wolfgang Schrott Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg

Abstract: It is shown that O-(diphenylphosphinyl) hydroxylamine 4g transforms all kinds of "carbanions" into primary amines; best yields are received with "stabilized anions", e.g. of the benzylic type.

Electrophilic amination reagents like chloramines $\underline{1}^{2,3}$, O-alkyl^{2a} (aryl) hydroxyl= amines $\underline{2}^4$ and O-sulfonylhydroxylamines $\underline{3}^{5-8}$ are being increasingly used for the preparation of all kinds of amino compounds¹⁻⁹.

 $\underline{\underline{a}}$: R' = C₆H₅, R = H $\underline{\underline{b}}$: R' = C₆H₅, R = CH₃

We have recently introduced and successfully applied for that purpose O-phosphinyl- and O-phosphoryl-N,N-dimethylhydroxylamines ($\frac{4}{9}$ and $\frac{5}{9}$ and $\frac{5}{9}$ respectively, R' = aryl, R = CH₃). The determination of the correct structure of O-(diphenyl-phosphinyl)hydroxylamine $\frac{4}{9}$ by $\frac{\text{Harger}}{1}$ and the easy access, enhanced stability and low tendency for side reactions of phosphorus compounds like $\frac{4}{9}$ and $\frac{5}{9}$ stimulated the investigation also of the NH₂-compound $\frac{4}{9}$ as an amination reagent. It is because of two recent communications $\frac{13}{9}$, (reaction with N-, P- and S-nucleophiles) that we wish to disclose our results with $\frac{4}{9}$: amination of organometallic compounds to yield primary amines $\frac{1}{9}$, Tab. 1 gives a summary of the results.

Tab. 1. Primary amines $\frac{7}{2}$ from the reactions of organometallic compounds R-M (M = metal(derivative)) $\frac{6}{2}$ with $\frac{4}{2}$ a:

R-M	O C ₆ H ₅) ₂ P-O-NH ₂	R-NH ₂ 16
<u>6</u>	<u>4 a</u>	<u>7</u>

	<u>6</u>	<u>7</u>	[%]
a.	C ₆ H ₅ -MgBr	C ₆ H ₅ -NH ₂	22
b.	C ₆ H ₅ -MgCl	$C_{6}H_{5}-NH_{2}$	35
c.	1-Naphthyl-MgBr	1-Naphthy1-NH ₂	31
đ.	C ₆ H ₅ CH ₂ -MgBr	$C_{6}H_{5}CH_{2}-NH_{2}$	51
e.	C ₆ H ₅ CH ₂ -MgCl	$C_{6}H_{5}CH_{2}-NH_{2}$	70
f.	C_6H_5 (CH ₂) ₂ -MgBr	C_6H_5 (CH_2) ₂ -NH ₂	40
g.	[C ₆ H ₅ (CH ₂) ₂] ₃ B	$C_{6}H_{5}$ (CH_{2}) ₂ - NH_{2}	36 ^{α)}
h.	C ₆ H ₅ CH ₂ -Li	$C_{6}H_{5}CH_{2}-NH_{2}$	30
i.	(C ₆ H ₅) ₂ CH-Li	(C ₆ H ₅) ₂ CH-NH ₂	41
j.	(C ₆ H ₅) ₃ C-Li	(C ₆ H ₅) ₃ C-NH ₂	30
k.	C ₆ H ₅ CH (C ₆ H ₅) ILi	$ \begin{pmatrix} C_6 H_5 & O & O \\ CH & (C_6 H_5) & O & & O \\ H & NH_2 & O & & O \\ C_6 H_5 & (CH_2)_2 - C - C_6 H_5 & O \end{pmatrix} $	31
1.	CH ₃ CH ₃ CH ₃ CH ₃	CH_3 NH_2 CH_3 CH_3 CH_3	37
	Li [©]	R = H	30
m.		$R = CO_2CH_3$	47
	Ř	$\hat{R} \hat{N}H_2$ $R = CO_2 - t - Bu$	78
n.	C ₆ H ₅ CH=COLi OEt	C ₆ H ₅ CH CO ₂ Et	4 5
٥.	Li C ₆ H ₅ CH-CN	C ₆ H ₅ CH NH ₂	37
p.	Li (C ₆ H ₅) ₂ C-CN	(C ₆ H ₅) ₂ C CN	67

q.
$$C_6H_5C=C$$
 OEt
 $C_6H_5C=CO_2Et$
 $C_6H_5C=CO_2Et$

The yield is related to all three R groups in $\underline{6}\underline{g}$; $\underline{6}$] 1,3-diphenylpropan-1-one is the product of the allyl amine $\underline{7}\underline{k}$, which rearranges to the corresponding primary enamine, this rearranges to the imine, which then is hydrolysed; $\underline{7}$) benzylcyanide results from the primary ynamine $\underline{7}\underline{s}$ 17.

It is apparent from Tab. 1, that with aryl and alkyl "carbanions" (e.g. $\underline{7}\underline{a}-\underline{c},\underline{f},\underline{q}$) $\underline{4}\underline{a}$ leads only to moderate amine yields. The generally higher yields with the N,N-dimethyl reagent $\underline{4}\underline{b}^{10}a$ suggested that protonation of these rather basic carbon nucleophiles by the NH₂-group of $\underline{4}\underline{a}$ reduces the amine yields, which we observed. In the case of "activated" organometallic compounds, especially of the benzylic type 17 , however, $\underline{4}\underline{a}$ competes favourably with other amination reagents, leading to primary amines 18 .

In summary, 4a, which is easily prepared 11,13 , rather stable (not explosive! 6b) and which aminates N-, P-, S-nucleophiles 13,14 , is also a reagent for the electrophilic amination of organometallic compounds to give primary amines.

<u>General procedure</u>: To 0.02 mol of the metallorganic species (Grignard reagents were prepared in the normal way; deprotonations were performed with 1.1 equivalents of n-butyllithium (n-Buli) or lithium diisopropylamide (LDA) at -15°C) in 100 ml tetrahydrofuran (THF), 4.66 g (0.02 mol) $\frac{4}{2}$ was added in several portions at -20°C and the suspension stirred vigorously for 12 h at room temperature. After hydrolysing the reaction mixture with 100 ml 2 N HCl, purification and isolation of the amines $\frac{7}{2}$ succeeded by the usual acid/base treatment.

<u>Acknowlegdement</u>: We are grateful to the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for financial support.

References and Notes

- 1. From the Diplomarbeit <u>W. Schrott</u>, Universität Marburg, 1980, and the Dissertation M. Bernheim, Universität München, 1981.
- 2. a) R. Schröder in "Houben-Weyl, Methoden der Organischen Chemie", Vol. XI, 1,

- E. Müller, Ed., Thieme, Stuttgart, 1957, p. 805, 807; b) M. Horiike, J. Oda, Y. Inouye, M. Ohno, Agric. Biol. Chem. 33, 292 (1969); Chem. Abstr. 71, 2929z (1969).
- 3. a) G.W. Kabalka, K.A.R. Sastry, G.W. McCollum, A. Yoshioka, J. Org. Chem. 46, 4296 (1981); b) G.W. Kabalka, K.A.R. Sastry, G.W. McCollum, C.A. Lane, J. Chem. Soc., Chem. Commun. 1982, 62.
- 4. a) <u>T. Sheradsky</u>, <u>G. Salemnik</u>, <u>Z. Nir</u>, Tetrahedron <u>28</u>, 3833 (1971); b) <u>A.S. Radhakrishna</u>, <u>G.M. Loudon</u>, <u>M.J. Miller</u>, J. Org. Chem. <u>44</u>, 4836 (1979).
- 5. a) D.H.R. Barton, L. Bould, D.L.J. Clive, P.D. Magnus, T. Hase, J. Chem. Soc. C1971, 2204, 2210; b) G. Boche, N. Mayer, M. Bernheim, K. Wagner, Angew. Chem. 90, 733 (1978); Angew. Chem. Int. Ed. Engl. 17, 687 (1978); c) T. Abraham, D. Curran, Tetrahedron 38, 1019 (1982).
- 6. a) M. Takeishi, Yuki Gosei Kagaku Kyokai Shi 28, 1171 (1970); Chem. Abstr. 74, 75683m (1971); b) Y. Tamura, J. Minamikawa, M. Ikeda, Synthesis 1977, 1;
 c) R.G. Wallace, Aldrichimica Acta 13, 3 (1980).
- 7. E.C. Taylor, J.-H. Sun, Synthesis 1980, 801.
- 8. a) M. Bernheim, G. Boche, Angew. Chem. 92, 1043 (1980); Angew. Chem. Int. Ed. Engl. 19, 1010 (1980); b) G. Boche, F. Bosold, M. Nießner, Tetrahedron Lett. 1982, 3255; c) G. Boche, M. Bernheim, M. Nießner, Angew. Chem., in print; d) ref. 1.
- 9. Summaries: a) <u>E. Schmitz</u>, Russ. Chem. Rev. <u>45</u>, 16 (1976); b) <u>F. Effenberger</u>, Angew. Chem. <u>92</u>, 147 (1980); Angew. Chem. Int. Ed. Engl. <u>19</u>, 1951 (1980); c) ref. 6b; d) ref. 6c.
- 10. a) <u>G. Boche</u>, <u>W. Schrott</u>, unpublished results; b) <u>A. Heesing</u>, <u>H. Steinkamp</u>, Chem. Ber. 115, 2854 (1982).
- 11. M.J.P. Harger, J. Chem. Soc., Chem. Commun. 1979, 768.
- 12. e.g. oxidation of the nucleophilic substrate, especially of "carbanions",
 s. ref. 5c, 8c.
- 13. M.J.P. Harger, J. Chem. Soc. Perkin I 1981, 3284.
- 14. W. Klötzer, H. Baldinger, E.M. Karpitschka, J. Knoflach, Synthesis, 1982, 592
- 15. The preparation of primary amines from "carbanions" and azides as electrophilic amination reagents has been described recently by two groups: a) B.M. Trost, W.H. Pearson, J. Am. Chem. Soc. 103, 2483 (1981); b) A. Hassner, P. Munger, B.A. Belinka Jr., Tetrahedron Lett. 1982, 699.
- 16. The reaction products were characterized by elemental analysis, ¹H-nmr-, IR-and/or mass-spectroscopy.
- 17. Primary ynamines rearrange notoriously to the corresponding nitriles; <u>H.G.</u>

 <u>Viehe</u>, "Ynamines" in "Chemistry of Acetylenes", Marcel Dekker, Inc., New

 York, 1969, pp.861-912.
- 18. The influence of different gegenions on the amine yields is remarkable, e.g. 6d,e,h.